关于 AI 解决问题能力的思考

我们一直有个想法,让 AI 能自动帮我们完成我们想要做的事情,让自动驾驶,自动写文章,自动做饭,自动操作设备,自动……

随着 AI 的发展,这个想法越来越接近现实,但是还没有实现。

大型语言模型已经具备了强大的知识掌握能力和语言表达能力,能够进行复杂的对话、代码生成、逻辑推理,甚至模拟某种程度的「思考过程」。但现实是,从「能说会道」到「能完成任务」之间,还有一段不小的距离。

我们不妨换个角度想一想:当我们让一个人类来完成一项任务时,我们通常会先给出一个大致的目标,然后逐步明确问题的边界、操作的步骤、可用的工具以及判断结果是否合格的标准。

这个过程,本质上就是在界定问题范围。而问题范围的界定程度,直接决定了完成任务的难易程度。

举个例子:

  • 如果你让一个人「帮我查一下明天的天气」,这个问题的边界非常清晰:地点、时间、数据源、输出格式都相对明确。
  • 但如果你说:「帮我设计一个新产品并提出完整的商业策略」,这个任务的边界就非常模糊:用户是谁?目标市场在哪里?预算是多少?成功的标准是什么?每个维度都可能引出一连串子问题。

同样的道理也适用于 AI。当前的 LLM 和 Agent 系统,在处理边界清晰的问题时表现良好,比如问答、摘要、代码填空等。但一旦任务的边界开始模糊、动态、依赖外部反馈,AI 的表现就会迅速下降。

我们可以将任务的难度,理解为 AI 需要「摸清楚问题边界」的程度:

  • 边界清晰:问题的输入、输出、规则都明确,AI 可以像填空题一样一步步推出来。这类任务是目前AI的强项。
  • 边界部分明确:有一定规则和目标,但需要自己补充部分前提或假设,比如“帮我写一段支持用户登录的代码”,AI 需要决定使用什么框架、是否带界面等等。
  • 边界高度不确定:如「帮我规划一次创业项目」,AI 需要从目标澄清开始,到路径选择、资源调度、自我评估等多个层面进行处理,这时候它往往会陷入混乱。

换句话说,问题边界越模糊,AI 所要面对的「可能性范围」就越大。 如果不加限制,它就像在一片完全未知的森林里找路,既不知道出口在哪,也不知道有没有陷阱。于是它要么乱走一通,要么干脆原地画圈,给出一些看似合理却走不通的「方案」。

人类面对复杂或模糊的问题时,常常也不是立刻给出答案,而是先界定问题范围

  • 这个问题的关键变量是什么?
  • 我需要哪些信息才能做出决策?
  • 能不能先试着完成一个最小版本,看看方向是否正确?

这种思考方式其实是一种认知上的「范围压缩」能力,目的是在面对信息不完备或目标不清晰时,先把问题压缩到一个可以行动的范围,再逐步展开。

相比之下,当前的 LLM 与 Agent 系统,即便具备了强大的生成能力和任务执行能力,在主动界定问题范围上,仍显得笨拙甚至「无意识」。

常见的三个表现:

  1. 缺乏信息优先级判断能力:LLM 接收到一个模糊任务时,往往无法判断哪些信息是「必须现在明确」的,哪些可以「先搁置再处理」。它通常会试图一次性填满所有空白,而不是按优先级逐步推进。

  2. 不具备「最小可行路径」意识:在面对一个复杂任务时,LLM 更倾向于直接生成一个看似完整的解决方案(例如一个功能齐全的系统架构或一篇结构完整的长文),而不是像人一样,先试着完成一个最小可行版本(MVP),再逐步扩展。

  3. 无法识别自己的「知识盲区」:更关键的是,LLM 并不知道自己不知道。它不会像人那样产生「这个问题我不确定,我需要求证」的元认知反应,而是继续生成看似合理但实则无效甚至自相矛盾的内容。这种「自信且错误」的输出在真实任务中极具风险。

新的 Agent 架构正在尝试解决这一问题。这类系统强调:

  • 多阶段任务拆解:将一个复杂任务拆成多个阶段,每个阶段都有明确的子目标与预期输出;
  • 反思与自检机制:在生成每一步结果后,模型会对其进行「自我评估」,判断是否合理、是否遗漏、是否需要重试;
  • 信息明确性评估:模型会尝试识别「哪些信息还不足以支持下一步推理」,并主动提出请求或假设补全;
  • 动态路径调整能力:在发现路径错误时,能够中止当前链条,回退到上一步重新规划,而不是「硬着头皮走下去」。

这些能力构成了模型的「思维闭环」,让其在某种意义上具备了「界定问题范围」的雏形。

在真实世界中,任务从来不是开门见山、结构清晰的:

  • 用户可能只给出一个模糊的目标(如「帮我设计一个商业模式」);
  • 过程中会出现信息缺失、中断、反馈变化;
  • 执行中需要不断判断「我走的方向是否还正确」。

要应对这些情况,AI 不仅需要处理信息的能力,更需要处理「信息不足」时的自我调节能力

这个问题的研究,已经引起了学术界的广泛关注。有一些观点::

  • 草图策略:让 AI 在面临复杂问题时,不再一次性给出答案,而是先生成多条解决思路的「草图」,再将其分解为子任务,逐步执行、评估、修正。这种方式的核心价值在于:先建立多个「问题理解的版本」,再逐步收敛

  • 「树搜索」+「奖励驱动」。让 AI 在面对不确定任务时,能够像爬山一样,不断生成多个路径,并根据「每一步的效果」来评估是否继续深入。这种「试探 + 筛选」的方式,帮助模型更加高效地界定问题边界,从而避免陷入无效探索。

  • 仅作为助手:让 AI 作为辅助的思维工具,用于生成备选方案、补全缺失要素、解释已有路径等。

回到我们当前,作为一个 AI 的使用者,我们能做什么呢?

  1. 提出更好的问题:我们可以通过更精准的问题表述来帮助 AI 更好地工作。这意味着在提问时,不仅要描述目标,还要主动界定边界条件:具体背景是什么?可用资源有哪些?有哪些限制条件?预期的输出格式是什么?这种前置界定能显著提高 AI 的输出质量。同时,我们也可以采用渐进式引导的方式,先让 AI 完成一个小范围的子任务,验证其理解是否正确,再逐步扩展到更复杂的任务范围,形成一种「小步快跑」的合作模式。

  2. 构建人机协作的闭环流程:有效的人机协作应该是一个闭环流程,而非单向输入输出。这意味着用户需要对AI的输出进行及时评估,提供明确的反馈,指出哪些方向是正确的,哪些需要调整,哪些问题仍然存在。通过这种持续的反馈修正机制,AI 能够逐步调整其对问题边界的理解。特别是对于复杂任务,我们可以建立人在回路的工作模式,即AI负责生成备选方案和细节执行,人类负责决策方向和质量把关,形成优势互补的协作关系。

  3. 适应 AI 的认知局限性:理解并适应AI的认知局限,是高效使用 AI 的关键。目前的 AI 在处理抽象概念、因果关系和长期规划时仍有明显短板。因此,我们可以主动将复杂任务拆解为一系列明确边界的子问题,让 AI 在其擅长的领域发挥作用。同时,对于涉及价值判断、创新突破或高风险决策的任务,我们需要保持审慎态度,将AI视为辅助工具而非决策者。认识到这一点,有助于我们在期待与现实之间找到平衡点,避免对 AI 能力的过度期待或低估。

以 AI 编程为例,当前比较好的实践是:

经验先行(包括自身经验或行业最佳实践),预先为 AI 构建整体架构,并将复杂任务拆解为一系列边界清晰、认知负载适中的子任务。每一个子任务都应在模型的能力边界之内,既能被准确理解和执行,又能稳步推动整体目标的进展,避免陷入回溯式的反复试错与路径偏离。

以上。

发表评论

电子邮件地址不会被公开。 必填项已用*标注


*

您可以使用这些HTML标签和属性: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>